Model Perimeter

Perimeter is the distance around a shape.
Find the perimeter of the shape.
Step 1 Choose a unit to begin counting and label it 1.

Step 2 Count each unit around the shape to find the perimeter.
16 units

So, the perimeter of the shape is 16 units.

Find the perimeter of the shape. Each unit is 1 centimeter.

centimeters
3.

2.

\qquad centimeters
4.

\qquad

Find Perimeter

Kelsey wants to know the perimeter of the shape below.
She can use an inch ruler to find the perimeter.
Step 1 Choose one side of the shape to measure. Place the zero mark of the ruler on the end of the side. Measure to the nearest inch. Write the length.

Step 2 Use the ruler to measure the
 other three sides. Write the lengths.

Step 3 Add the lengths of all the sides.
$1+1+2+1=5$
So, the perimeter of the shape is 5 inches.

Use an inch ruler to find the perimeter.

1.

\qquad inches
2.

\qquad inches

Algebra•Find Unknown Side Lengths

An unknown side length is a side that does not have its length labeled with a number. Instead the side is labeled with a symbol or letter, such as a.

The perimeter of the shape is $\mathbf{2 0}$ meters.
Find the value of a.

Think: There is only one unknown side length.
Step 1 Add the known side lengths.
$6+9=15$
Step 2 Subtract the sum of the known side lengths from the perimeter.

$$
20-15=5
$$

Step 3 Add to check your work.
$6+9+5=20 \checkmark$
So, the unknown side length, a, is 5 meters.
The perimeter of the square is 12 feet.
What is the length of each side of the square?
Think: A square has four sides of equal length.

Step 1 Divide the perimeter by the number of sides.

$$
12 \div 4=3
$$

Step 2 Multiply to check your work.
$4 \times 3=12 \checkmark$
So, the length of each side, x, is 3 feet.

Find the unknown side lengths.

1. Perimeter $=18$ centimeters

2. Perimeter $=20$ yards

centimeters
\qquad
Reteach
© Houghton Mifflin Harcourt Publishing Company

Understand Area

A unit square is a square with a side length of 1 unit. Area is the measure of the number of unit squares needed to cover a surface. A square unit is used to measure area.

What is the area of the shape?

- ••••

Step 1 Draw lines to show each unit square in the shape.

Step 2 Count the number of unit squares to find the area.

The area of the shape is 3 square units.

Count to find the area of the shape.

Area $=$ \qquad square units

Area $=$ \qquad square units

Area $=$ \qquad square units

Measure Area

Find the area of the shape. Each unit square is 1 square inch.

Think: How many unit squares are needed to cover this flat surface?
Step 1 Use 1-inch square tiles. Cover the surface of the shape with the tiles. Make sure there are no gaps (space between the tiles). Do not overlap the tiles.

Step 2 Count the tiles you used. 5 tiles are needed to cover the shape.

So, the area of the shape is 5 square inches.

Count to find the area of the shape.

Each square is 1 square inch.
1.

Area $=$ \qquad square inches
2.

Area $=$ \qquad square inches

Use Area Models

Use multiplication to find the area of the shape.
Each unit square is 1 square meter.

Step 1 Count the number of rows. There are 6 rows.

Step 2 Count the number of unit squares in each row. There are 10 unit squares.

1									
2									
3									
4									
5									
6									

Step 3 Multiply the number of rows by the number in each row to find the area.
number of rows \times number in each row $=$ area
$6 \times$
10
$=60$

So, the area of the shape is 60 square meters.

Find the area of the shape.

Each unit square is 1 square meter.
1.

2.

Problem Solving • Area of Rectangles

Mrs. Wilson wants to plant a garden, so she drew plans for some sample gardens. She wants to know how the areas of the gardens are
 related. How will the areas of Gardens A and B change? How will the areas of Gardens C and D change?

Use the graphic organizer to help you solve the
 problem.

Read the Problem							
What do I need to find? I need to know how the areas will change from A to B and from C to D.		What information do I need to use? I need to use the length and width of each garden to find its area.			How will I use the information? I will record the areas in a table. Then I will look for a pattern to see how the areas will change.		
Solve the Problem							
	Length	Width	Area		Length	Width	Area
Garden A	2 ft	6 ft	12 sq ft	Garden C	2 ft	3 ft	6 sq ft
Garden B	4 ft	6 ft	24 sq ft	Garden D	4 ft	3 ft	12 sq ft

From the table, I see that the lengths will be doubled and
the widths will be the same.
The areas in square feet will change from 12 to $\underline{24}$ and from 6 to 12 . So, the area will be doulbled.

Solve.

1. Mrs. Rios made a flower garden that is 8 feet long and 2 feet wide. She made a vegetable garden that is 4 feet long and 2 feet wide. How do the areas change?

Area of Combined Rectangles

You can break apart a shape into rectangles to find the total area of the shape.

Step 1 Draw a line to break apart the shape into two rectangles.

Step 2 Count the number of unit squares in each rectangle.

Step 3 Add the number of unit squares in each rectangle to find the total area.

$$
12+8=20 \text { unit squares }
$$

So, the area of the shape is 20 square units.

Draw a line to break apart the shape into rectangles.
Find the area of the shape.
1.

2.

3.

4.

Same Perimeter, Different Areas

You can use perimeter and area to compare rectangles.
Compare the perimeters of Rectangle A and Rectangle B.
A Find the number of units around each rectangle.

Rectangle A: $3+2+3+2=10$ units
Rectangle B: $4+1+4+1=10$ units
B

Compare: 10 units $=10$ units
So, Rectangle A has the same perimeter as Rectangle B.

Compare the areas of Rectangle A and Rectangle B.

A	Find the number of unit squares needed to cover each rectangle.
	Rectangle A : 2 rows of $3=2 \times 3$, or 6 square units
B	Rectangle B : 1 row of $4=1 \times 4$, or 4 square units
	Compare: 6 square units >4 square units
	So, Rectangle A has a greater area than Rectangle B

Find the perimeter and the area. Tell which rectangle has a greater area.
1.

A: Perimeter $=$ \qquad
Area $=$ \qquad
$B:$ Perimeter $=$ \qquad ;
Area $=$ \qquad
Rectangle \qquad has a greater area.
2.

B

A: Perimeter = \qquad
Area $=$ \qquad
B : Perimeter $=$ \qquad ;

Area $=$ \qquad
Rectangle \qquad has a greater area.

Same Area, Different Perimeters

Find the perimeter and area of Rectangles A and B.
Tell which rectangle has a greater perimeter.
Step 1 Find the area of each rectangle. You can multiply the number of unit squares
 in each row by the number of rows.

Rectangle A : $2 \times 6=12$ square units
Rectangle B : $3 \times 4=12$ square units

Step 2 Find the perimeter of each rectangle. You can add the sides.

Rectangle A: $6+2+6+2=16$ units
Rectangle B: $4+3+4+3=14$ units
Step 3 Compare the perimeters. 16 units >14 units.
So, Rectangle A has a greater perimeter.

Find the perimeter and the area. Tell which rectangle has a greater perimeter.
1.

A. Area $=$ \qquad ;

Perimeter $=$ \qquad
B: Area = \qquad
Perimeter $=$ \qquad
Rectangle \qquad has a greater perimeter.
2.

A: Area $=$ \qquad
Perimeter $=$ \qquad
B: Area = \qquad
Perimeter $=$ \qquad
Rectangle \qquad has a greater perimeter.

